

5CX200Nd/N

COAXIAL TRANSDUCER

KEY FEATURES

- High power handling: 300 / 80 W program power
- High sensitivity: 92,5 / 102 dB (1W / 1m) (LF / HF)
- 1,5" / 1,75" voice coil (LF/HF)
- Common neodymium magnet system design
- Weatherproof paper cone with Santoprene[™] surround
- CONEX spider

- Shorting cap for extended response
- Extended controlled displacement: X_{max} ± 5,7 mm
- 19 mm peak-to-peak excursion before damage
- Polyester HF diaphragm
- · Excellent off-axis response
- 70° coverage horn for HF dispersion control

TECHNICAL SPECIFICATIONS

Nominal diameter	125 mm 5 ii		5 in
Rated impedance (LF/HF)			8/8Ω
Minimum impedance (LF/HF)		5	5,7 / 5,0 Ω
Power capacity 1 (LF/HF)		150 /	40 W _{AES}
Program power ² (LF/HF)		3	00 / 80 W
Sensitivity (LF/HF 3)	92,5 dB	1W /	1m @ Z _N
	102 dB	1W /	1m @ Z _N
Frequency range		75 - 2	20.000 Hz
Recom. HF crossover	2,5 kHz or higher (12 dB/oct min slope)		
Voice coil diameter (LF/HF)	38,1	mm	1,5 in
	44,4	mm	1,75 in
BI factor			7,3 N/A
Moving mass			0,006 kg
Voice coil length			14 mm
Air gap height			6 mm
X _{damage} (peak to peak)			19 mm

THIELE-SMALL PARAMETERS 4

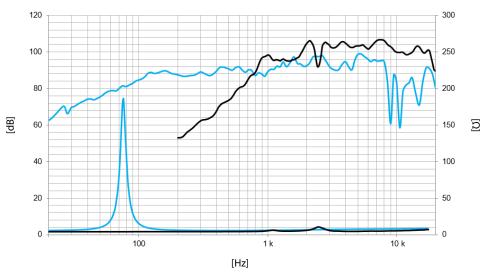
Resonant frequency, f _s	75 Hz
D.C. Voice coil resistance, R _e	5,2 Ω
Mechanical Quality Factor, Q _{ms}	10
Electrical Quality Factor, Q _{es}	0,28
Total Quality Factor, Q _{ts}	0,28
Equivalent Air Volume to C _{ms} , V _{as}	9,1 I
Mechanical Compliance, C _{ms}	711 μ m / N
Mechanical Resistance, R _{ms}	0,3 kg / s
Efficiency, η ₀	1,3 %
Effective Surface Area, S _d	$0,0095 \text{ m}^2$
Maximum Displacement, X _{max} ⁵	5,7 mm
Displacement Volume, V _d	48 cm ³
Voice Coil Inductance, L _e	0,22 mH

Notes

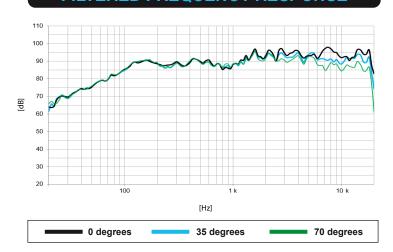
¹ The power capaticty is determined according to AES2-1984 (r2003) standard.

² Program power is defined as power capacity + 3 dB.

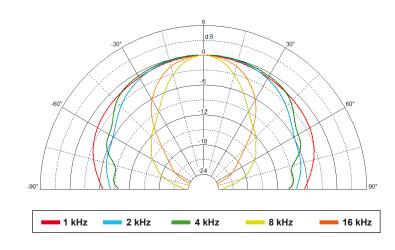
³ Sensitivity was measured at 1m distance, on axis, with 1W input, averaged in the range 2 - 7 kHz


⁴T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

 $^{^{\}rm 5}$ The X_{max} is calculated as (L_{vc} - H_{ag})/2 + (H_{ag}/3,5), where L_{vc} is the voice coil length and H_{ag} is the air gap height.

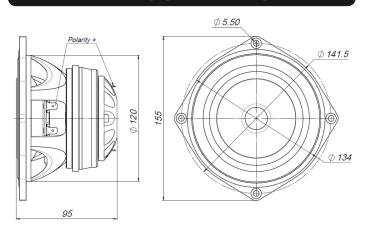

5CX200Nd/N

COAXIAL TRANSDUCER


Note: Frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

FILTERED FREQUENCY RESPONSE

Note: Filtered frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m using filter FD-2CX


POLAR PATTERN

MOUNTING INFORMATION

Overall diameter	155 mm	6,1 in
Bolt circle diameter	141,5 mm	5,6 in
Baffle cutout diameter:		
- Front mount	120 mm	4,7 in
Depth	95 mm	3,7 in
Volume displaced by driver	0,5	0,02 ft ³
Net weight	1,6 kg	3,5 lb
Shipping weight	1,7 kg	3,7 lb

DIMENSION DRAWING

